

	0	5 momem	mex	Smene		5mome	mex	-	\%
						=			
									\pm
									-2masm
								$=$	
									mom
									maxamemome
								2	
									-
									\pm

			The following set of indicators may be used to determine whether students have met the corresponding specific outcome.	$\begin{array}{\|c\|} \hline \text { eneral Outcome: Develop number sense } \\ \text { Specific Outcome } \\ \text { tis expected that students will: } \end{array}$	$\begin{array}{\|c\|} \hline \text { Achievement Indicators } \\ \begin{array}{c} \text { The following set of indicators may be used to determine whether } \\ \text { students have met the corresponding specific outcome. } \end{array} \\ \hline \end{array}$				
\qquad					- Express a given percent as a decimal or fraction. - Solve a given problem that involves finding a percent. - Determine the answer to a given percent problem where the answer reeuuires rounding, and explain why an approximate answer is needed; e.g., total cost including taxes.				
									Non
									- Explain, using examples, the exponent laws of powers with integral bases (excluding base 0) and whole number exponents. - Evaluate a given expression by applying the exponent laws. - Determine the sum of two given powers, e.g., $5^{2}+5^{3}$, and record the process. - Determine the difiference of two given powers, e.g., $4^{3}-4^{2}$, and record the process. - Identify the error(s) in a given simplification of an expression involving powers.

	The following set of indicators may be used to determine whether students have met the corresponding specific outcome.		The following set of indicators may be used to determine whether students have met the corresponding specific outcome.	$\begin{array}{\|c} \text { Specific Outcome } \\ \text { ti is expected that students will: } \\ \hline \end{array}$	$\begin{aligned} & \text { Achievement Indicators } \\ & \text { The following set of indicators may be used to determine whether } \\ & \text { students have met the corresponding spocific outcome. } \\ & \hline \hline \end{aligned}$		$\begin{aligned} & \text { Achievement Indicators } \\ & \text { The following set of indicators may be used to determine whether } \\ & \text { students have met the corresponding specific outcome. } \end{aligned}$		
	* Create a set of equivalent fractions: and explain, using concrete materials, why there are many equivalent fractions for any given fraction. - Model and explain that equivalent fractions represent the same quantity. *. Determine if thwo given fractions are equivalent, using concrete materials or pictorial representations. - Formulate and verity a rule for developing a set of equivalent fractions. * Identify equivalent fractions for a given fraction. - Compare two given fractions with unlike denominators by creating equivalent fractions. - Position a given set of fractions with like and unlike denominators on number line, and explain strategies used to determine the order.		- Extend a given number line by adding numbers less than zero, and explain the pattern on each side of zero. - Place given integers on a number line, and explain how integers are ordered. - Describe contexts in which integers are used; e.g., on a thermometer - Compare two integers; reppesent their relationship using the symbols <, >and $=$; and verify the relationship, using a number line. - Order given integers in ascending or descending order.	$\begin{array}{\|l} \text { 6. Demonstrate an understanding of } \\ \text { addition and subtraction of } \\ \text { integers, concretely, pictorially and } \\ \text { symbolically. } \\ {[\mathrm{C}, \mathrm{CN}, \mathrm{PS}, \mathrm{R}, \mathrm{~V}]} \end{array}$		$\begin{aligned} & \text { 7. } \begin{array}{l} \text { Demonstrate an understanding of } \\ \text { muttiplication and division of of } \\ \text { integers, concretely, pictorially and } \\ \text { symbolically. } \\ {[\mathrm{C}, \mathrm{CN}, \mathrm{PS}, \mathrm{R}, \mathrm{~V}]} \end{array} \end{aligned}$	* Identify the operation required to solve a given problem involving integers. - Provide a context that requires multiplying two integers. - Provide a context that requires divididing two integers. - Model the process of multiplying two integers, using concrete materials or pictorial representations, and record the process. - Model the process of dividing an integer by an integer, using concrete materials or pictorial representations, and record the process. - Generalize and apply a rule for determining the sign of the product and quotient of integers. - Solve a given problem involving the division of integers (2-digit by 1 - digit) without the use of technology. - Solve a given problem involving the division of integers (2-digit by 2- digit) with the use of technology. - Solve a given problem involving integers, taking into consideration order of operations.		
$\begin{array}{\|ll} \hline \text { 8. } & \begin{array}{l} \text { Describe and represent decim } \\ \text { (tentris, , iundredths, } \\ \text { thousandths), concretely, } \\ \text { pictorially and symbolically. } \end{array} \\ {[\mathrm{C}, \mathrm{CN}, \mathrm{R}, \mathrm{~V}]} \end{array}$		cemem	-Identify which operation is necessary to solve a given problem, and solve it. - Determine the reasonableness of an answer. - Estimate the solution to, and solve, a given problem. - Determine whether the use of technology is appropriate to solve a given problem, and explain why. - Use technology when appropriate to solve a given problem.						
		$\begin{array}{ll} \hline \text { 4. } \begin{array}{l} \text { Relate improper fractions to } \\ \text { mixed numbers and mixed } \\ \text { numbers to improper fractions. } \end{array} \\ {[\mathrm{CN}, \mathrm{ME}, \mathrm{R}, \mathrm{~V}]} \end{array}$	- Demonstrate, using models, that a given improper fraction represents a number greater than 1 . - Express improper fractions as mixed numbers. - Express mixed numbers as improper fractions. - Place a given set of fractions, including mixed numbers and improper fractions, on a number line, and explain strategies used to determine position. - Translate a given improper fraction between concrete, pictorial and symbolic forms. - Translate a given mixed number between concrete, pictorial and symbolic forms.	and	(It is intended that repeating decimals be limited to decimals with 1 or 2 repeating digits.) - Predict the decimal representation of a given fraction, using patterns; e.g., $\frac{1}{11}-0.0 \mathrm{Js} \cdot \frac{2}{11}-0-\overline{1 s}, \frac{3}{11}=7$ - Match a given set of fractions to their decimal representations. - Sort a given set of fractions as repeating or terminating decimals. - Express a given fraction as a terminating or repeating decimal. - Express a given repeating decimal as a fraction. - Express a given terminating decimal as a fraction. - Provide an example where the decimal representation of a fraction is an approximation of its exact value.				
10. Demonstrate an understanding of addition and subtraction of decimals (limited to thousandths) IC, CN, PS, R, VI	*Order a given set of decimals by placing them on a number line that contains the benchmarks $0.0,0.5$ and 1.0 . - Order a given set of decimals including only tenths, using place value - Order a given set of decimals including only hundredths, using place value. - Order a given set of decimals including only thousandths, using place value. * Explain what is the same and what is different about $0.2,0.20$ and 0.20 . - Order a given set of decimals including tenths, hundredths and thousandths, using equivalent decimals; e.g., $0.92,0.7,0.9,0.876$, 0.925 in order is $0.700,0.876,0.900,0.920,0.925$.								

