MATHEMATICAL PROCESSES

There are critical components that students must encounter in a mathematics program in order to achieve the goals of mathematics education and embrace lifelong learning in mathematics.

mathematical process	Communication [c]	Connections [CN]	Mental Mathematics and Estimation [ME]	$\underset{\text { Proble Solving }}{ }$	$\underset{\text { Reas }}{\text { Rening }}$	$\underset{[T]}{\text { Technology }}$	Visualization [V]
Students are expected to	communicate in order tol learn and expresss their understanding	connect mathematical ideas to other concepts in mathematics, to everyday experiences and to other disciplines	demonstrate fluency with mental mathematics and estimation	develop and apply new mathematical knowledge through problem solving	develop mathematical reasoning	select and use technologies as tools for learning and for solving problems	$\begin{gathered} \text { develop visualization skills to to assist in } \\ \text { processing information, making } \\ \text { connections and solving problems } \\ \hline \end{gathered}$

MATHEMATICAL PROCESSES

There are critical components that students must encounter in a mathematics program in order to achieve the goals of mathematics education and embrace lifelong learning in mathematics.

MATHEMATICAL PROCESS	$\begin{gathered} \text { Communication } \\ {[c]} \end{gathered}$	Connections [CN]	Mental Mathematics and Estimation [ME]	$\underset{\text { Proble }}{\substack{\text { Prolving }}}$	$\underset{\text { RR] }}{\text { Reasoning }}$	$\underset{[T]}{\text { Technology }}$	Visualization [V]
Students are expected to	communicate in order to learn and express their understanding	connect mathematical ideas to other concepts in mathematics, to everyday experiences and to other disciplines	demonstrate fluency with mental mathematics and estimation	develop and apply new mathematical knowledge through problem solving	develop mathematical reasoning	select and use technologies as tools for learning and for solving problems	develop visualization skills to assist in processing information, making connections and solving problems

Sub-Strand: Variables and Equations									
$\xrightarrow{\text { Kenerald Outcomen }}$ (N/A									
Specific Outcome									
It is expected that students will:									
N/A	4. Describe equality as a balance and inequality as an imbalance concretely and pictorially (0 to 20). [C, CN, R, V]	4. Demonstrate and explain the meaning of equality and inequality, concretely and pictorially. [C, CN, R, v]	4. Solve one-step addition and subtraction equations involving a symbol to represent an unknown number. [C, CN, PS, R, V]	Solve one-step equations involving a symbol to represent an unknown number. [C, CN, PS, R, V]	3. Solve problems involving singlevariable, one-step equations with whole number coefficients and whole number solutions. [C, CN, PS, R]	3. Represent generalizations arising from number relationships, using equations with letter variables. [C, CN, PS, R, V]	Explain the difference between an expression and an equation. [C, CN]	2. Model and solve problems concretely, pictorially and symbolically, using linear equations of the form: - $a x=b$ - $\frac{x}{a}=b, a \neq 0$ - $a x+b=c$ - $\frac{x}{a}+b=c, a \neq 0$ $\text { - } a(x+b)=c$ where a, b and c are integers. [C, CN, PS, V]	$\begin{aligned} & \text { 3. Model and solve problems, using } \\ & \text { linear equations of the form: } \\ & \text { - } a x=b \\ & \text { - } \frac{x}{a}=b, a \neq 0 \\ & \text { - } a x+b=c \\ & \text { - } \frac{x}{a}+b=c, a \neq 0 \end{aligned}$
	5. Record equalities, using the equal symbol. [$\mathrm{C}, \mathrm{CN}, \mathrm{PS}, \mathrm{V}$]	5. Record equalities and inequalities symbolically, using the equal symbol or the not equal symbol. [C, CN, R, V]		5. Express a given problem as an equation in which a symbol is used to represent an unknown number. [CN, PS, R]	2. Express a given problem as an equation in which a letter variable is used to represent an unknown number (limited to whole numbers). [C, CN, PS, R]	4. Express a given problem as an equation in which a letter variable is used to represent an unknown number. [C, CN, PS, R]	5. Evaluate an expression, given the value of the variable(s). [CN, R]		$\begin{aligned} & \text { - } a x=b+c x \\ & \text { - } a(x+b)=c \\ & \text { - } a x+b=c x+d \\ & \text { - } a(b x+c)=d(e x+f) \\ & \text { - } \frac{a}{x}=b, x \neq 0 \end{aligned}$ where a, b, c, d, e and f are rational numbers. [C, CN, PS, v]
						5. Demonstrate and explain the meaning of preservation of equality, concretely and pictorially. C, CN, PS, R, V]	3. Demonstrate an understanding o preservation of equality by: - modelling preservation of symbolically - applying preservation of equality to solve equations. [C, CN, PS, R, V]		4. Explain and illustrate strategies to solve single variable linear inequalities with rational coefficients within a problemsolving context [C, CN, PS, R, V]
							6. Model and solve, concretely, pictorially and symbolically, problems that can be represented y one-step linear equations of he form $x+a=b$, where a and b are integers [CN, PS, R, V]		5. Demonstrate an understanding of polynomials (limited to polynomials of degree less than or equal to 2). [c, CN, R, v]
							7. Model and solve,concretely, problems that can be represented by linear equations of the form: - $a x+b=c$ - $\frac{x}{a}=b, a \neq 0$ where a, b and c are whole		6. Model, record and explain the operations of addition and subtraction of polynomial expressions, concretely, pictorially and symbolically (limited to or equal to 2). [C, CN, PS, R, v]
							[CN, PS, R, V]		7. Model, record and explain the operations of multiplication and division of polynomial polynomials of degree less than or equal to 2) by monomials, concretely, pictorially and symbolically. $[\mathrm{C}, \mathrm{CN}, \mathrm{R}, \mathrm{v}]$

