Alberta's Program of Studies (Curriculum) - Mathematics - Shape and Space (Strand and Sub-strands)
Note: These strands are not intended to be discrete units of instruction. The integration of outcomes across trands makes mathematical experiences meaningful. Students should make the connection between concepts both within and across strands. PROGRESSION IS HIGHLIGHTED IN THE FOLLOWING DOCUMENT VIA BOLDED TEXT

MATHEMATICAL PROCESSES

MATHEMATICAL PROCESSES ics program in order to achieve the go							
MATHEMATICAL PROCESS	Communication [C]	Connections [CN]	Mental Mathematics and Estimation [ME]	$\underset{\text { [PS] }}{\substack{\text { Problem Solving }}}$	$\underset{\substack{\text { Reasoning } \\ \text { [R] }}}{\text { and }}$	$\underset{[7]}{\text { Technology }}$	Visualization [V]
Students are expected to	communicate in order to learn and express their understanding	connect mathematical ideas to other concepts in mathematics, to everyday experiences and to other discipinines	demonstrate fluency with mental mathematics and estimation	develop and apply new mathematica knowledge through problem solving	develop mathematical reasoning	select and use technologies as tools for learning and for solving problems	develop visualization skills to assist in processing information, making connections and solving problems

Sub-strand: Measurement									
Kindergarten 1 Grade 1									
${ }_{\text {Specitic Outcome }}^{\substack{\text { St } \\ \text { expected that students will: }}}$	${ }_{\text {It is expected d that studenents will: }}^{\substack{\text { Seic }}}$	tit specectidic that stumenents will:				${ }_{\text {It is }}^{\text {Speecectifed t that stume stents will }}$	${ }_{\text {It is }}^{\text {Speecectifed that stame stuents will: }}$	Specific Outcome ${ }_{\text {It }}^{\text {tis expected that students will: }}$	Specific Outcome
1. Use direct comparison to compare two objects based on a single attribute, such as length (height), mass (weight) and volume (capacity). [C, CN, PS, R, V]	. Demonstrate an understanding of measurement as a process of comparing by: - identifying attributes that can be compared - ordering objects - making statements of comparison - filling, covering or matching. [C, CN, PS, R, V]		2. Relate the number of seconds to a minute, the number of minutes to an hour and the number of days to a month in a problem-solving context. [C, CN, PS, R, V]	1. Read and record time, using digital and analog clocks, including 24-hour clocks. [C, CN, V]		2. Demonstrate that the sum of interior angles is: - 180° in a triangle 360° in a quadrilateral. [C, R]	1. Demonstrate an understanding of circles by: describing the relationships among radius, diameter and circumference - relating circumference to pi - determining the sum of the	1. Develop and apply the Pythagorean theorem to solve problems. [CN, PS, R, T, V] [ICT: P2-3.4]	1. Solve problems and justify the solution strategy, using the following circle properties: - the perpendicular from the centre of a circle to a chord bisects the chord - the measure of the central
		2. Relate the size of a unit of measure to the number of units (limited to nonstandard units) used to measure length and mass (weight). [C, CN, ME, R, V]	1. Relate the passage of time to ommon activities, using nonstandard and standard units minutes, hours, days, weeks, months, years). [CN, ME, R]	2. Read and record calendar dates in a variety of formats. [C, V]	4. Demonstrate an understanding of volume by: selecting and justifying referents for cm^{3} or m^{3} units - estimating volume, using referents for cm^{3} or m^{3} - measuring and recording volume (cm ${ }^{3}$ or m^{3}) constructing right rectangular prisms for a given volume. [C, CN, ME, PS, R, V]	1. Demonstrate an understanding of angles by: identifying examples of angles in the environment - Classifying angles according to their measure estimating the measure of angles using $45^{\circ}, 90^{\circ}$ and 180° as reference angles determining angle measures in degrees drawing and labelling angles when the measure is specified. [C, CN, ME, V]	central angles - constructing circles with a given radius or diameter - solving problems involving the radii, diameters and circumferences of circles. [C, CN, PS, R, v]	4. Develop and apply formulas for determining the volume of right rectangular prisms, right triangular prisms and right cylinders. [C, CN, PS, R, V]	angle is equal to twice the measure of the inscribed angle subtended by the same arc - the inscribed angles subtended by the same arc are congruent - a tangent to a circle is perpendicular to the radius at the point of tangency. $[\mathrm{C}, \mathrm{CN}, \mathrm{PS}, \mathrm{R}, \mathrm{T}, \mathrm{V}]$ $[\mathrm{ICT}: \mathrm{C6-3.1}, \mathrm{C6}-3.4]$
		3. Compare and order objects by length, height, distance around and mass (weight), using nonstandard units, and make statements of comparison [C, CN, ME, R, V]	5. Demonstrate an understanding of perimeter of regular and irregular shapes by: - estimating perimeter, using referents for cm or m - measuring and recording perimeter (cm, m) - constructing different shapes for a given perimeter (cm, m) to are possible for a perimeter. [C, ME, PS, R, V]	3. Demonstrate an understanding of area of regular and irregular 2-D shapes by: - recognizing that area is measured in square units - selecting and justifying referents for the units cm^{2} or m^{2} estimating area, using referents for cm^{2} or m^{2} - determining and recording area (cm^{2} or m^{2}) - constructing different rectangles for a given area (cm^{2} or m^{2}) in	2. Design and construct differen rectangles, given either perimeter or area, or both (whole numbers), and make generalizations. [C, CN, PS, R, v]	3. Develop and apply a formula for determining the: - perimeter of polygons - area of rectangles volume of right rectangular prisms. [C, CN, PS, R, V]	2. Develop and apply a formula for determining the area of: - triangles - parallelograms - circles. [CN, PS, R, V]		
		4. Measure length to the neares nonstandard unit by: using multiple copies of a unit - using a single copy of a unit (iteration process). [C, ME, R, V]	3. Demonstrate an understanding of measuring length (cm, m) by: - selecting and justifying eferents for the units $\mathbf{c m}$ and m modelling and describing the relationship between the units cm and m estimating length, using referents measuring and recording length, width and height. [C, CN, ME, PS, R, V]	different rectangles may have th same area. $[\mathrm{C}, \mathrm{CN}, \mathrm{ME}, \mathrm{PS}, \mathrm{R}, \mathrm{V}]$	Demonstrate an understanding of measuring length (mm) by: - selecting and justifying referents for the unit mm - modelling and describing the relationship between mm and cm units, and between mm and m units. [C, CN, ME, PS, R, V]			2. Draw and construct nets for 3-D objects. [C, CN, PS, V]	
		5. Demonstrate that changing the orientation of an object does not alter the measurements of its attributes. [C, R, V]	4. Demonstrate an understanding of measuring mass (\mathbf{g}, kg) by: - selecting and justifying referents for the units g and kg - modelling and describing the relationship between the units g and kg estimating mass, using referents - measuring and recording mass. [C, CN, ME, PS, R, V]		5. Demonstrate an understanding of capacity by: describing the relationship between mL and L selecting and justifying referents for $m L$ or L units - estimating capacity, using referents for mL or L - measuring and recording capacity (mL or L). [C, CN, ME, PS, R, V]				

Alberta's Program of Studies (Curriculum) - Mathematics - Shape and Space (Strand and Sub-strands)
Note: These strands are not intended to be discrete units of instruction. The integration of outcomes across trands makes mathematical experiences meaningful. Students should make the connection between concepts both within and across strands.
PROGRESSION IS HIGHLIGHTED IN THE FOLLOWING DOCUMENT VIA BOLDED TEXT.
MATHEMATICAL PROCESSES

