PROGRESSION IS HIGHLIGHTED IN THE FOLLOWING DOCUMENT VIA BOLDED TEXT

Based on Australian Curriculum, Assessment and Reporting Authority (ACARA) materials

Cross-curriculum priorities					
Aby	Aboriginal and Torres Strait slander histories and cultures	P	Asia and Austraila's engagement with Asia	\nmid	Sustainability

Year Level Indicators	PROFICIENCY STRANDS The proficiencies reinforce the significance of working mathematically within the content and describe how the content is explored or developed. They provide the language to build in the developmental aspects of the learning of mathematics.	Sub-strands							
		Units of measurement		Shape		Geometric reasonir		Location and transtormation	
		Content Descriptor	Elaborations	Content Descriptor	Elaboratio	Content Descriptor	Elaborations	Content Descriptor	Elaborations
Foundation	Sourced from Level descriptions: At this level:...,' ..Fluency includes...,' ',...continuing patterns, and comparing the lengths of objects' 'Problem Solving includes using materials to model authentic problems, sorting objects, using familiar counting sequences to solve unfamiliar problems, and the answer' 'Reasoning includes explaining comparisons of quantities, creating patterns, and explaining processes for indirect comparison of length'			Sort, describe and name familiar two-dimensional shapes and threedimensional objects in the environment (ACMMG009)	$*$Sorting and describing squares, circles, triangles, rectangles, spheres and cubes	N/A	N/	Describe position and movement (ACMMG010)	
Foundation Level Achievement Standard	NOTE: The standards are not divided into substrands in the AusVELS documents. However, ogic would dictate that the standards could be pu into sub-strands, as demonstrated to the right.	Students identity measurement attributes in practical situations and compare lengths, masses and capacities of familiar objects. They order events, explain their duratiton, and match days of the week to familiar events.		Students identify simple shapes in their environment and sort shapes by their common and distinctive features.		N/	N/A	They use simple statements and gestures to describe location.	
Level 1	Sourced from Level descriptions: 'At this level:...,' ..Fluency includes...,' ',...naming the days of the week...,' ..Problem Solving includes using materials to model authentic problems, giving and receiving directions to unfamiliar places...,' 'Reasoning includes explaining direct and indirect comparisons of length using uniform informal units...,'	Measure and compare the lengths and sapacaitios of pairs of objects using uniform informal units (ACMMG019) Tell time to the half-hour (ACMMGO20) Describe duraritionsusing months, weeks, days and hours (ACMMG021) (AMM	*Understanding that in order to compare objects, the unit of measurement must te the same size	Recognise and classify familiar two dimensional shapes and threedimensional objects using obvious features (ACMMG022)	* Focusing on geometric features and describing shapes and obbectu ssing everyday words such as 'corners', 'edges' and 'faces'	N/	NA	Give and follow directions to familiar locations. (ACMMG023)	* Understanding that people need to give and follow directions to and rom a place, and that this sinvolves turns, direction and distance * Understanding the meaning and imporance if words such as 'clockivese', anticlockwise', forward' and under.' when giving and following directions *Interpreting and following directions around familiar locations
$\underset{\substack{\text { Level } 1 \\ \text { Standieverd }}}{\text { Ant }}$	NOTE: The standards are not divided into substrands in the AusVELS documents. However, ogic would dictate that the standards could be pu into sub-strands, as demonstrated to the right	Students use informal units to of measurement to order objects based on length and capacity. They tell time to the hafl hour and explain time durations.		They describe two-dimensional shapes and three-dimensional objects. They continue simple patterns involving numbers and objects.		N/A	NA	They use the language of direction to move trom place to place.	

AusVELS - Mathematics AC: Measurement and Geometry (Strands and Sub-Strands with Elaboraions) (F-7)
Based on Australian Curriculum, Assessment and Reporting Authority (ACARA) materials

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Year Level Indicators} \& \multirow[t]{3}{*}{\begin{tabular}{l}
PROFICIENCY STRANDS \\
The proficiencies reinforce the significance of working mathematically within the content and describe how the content is explored or developed. They provide the language to build in the developmental aspects of the learning of mathematics.
\end{tabular}} \& \multicolumn{8}{|c|}{Sub-strands} \\
\hline \& \& \multicolumn{2}{|r|}{Units of measurement} \& \multicolumn{2}{|r|}{Shape} \& \multicolumn{2}{|l|}{Geometric reasoning} \& \multicolumn{2}{|r|}{Location and transtormation} \\
\hline \& \& Content Descriptor \& Elaborations \\
\hline \multirow{5}{*}{Level 2} \& \multirow[t]{5}{*}{\begin{tabular}{l}
Sourced from Level descriptions: \\
'At this level:...,' \\
.Fluency includes counting numbers in sequences readily, using informal units iteratively to compare measurements...,' ',...and describing and comparing time durations \\
Problem Solving includes formulating problems from authentic situations, making models and using number sentences that represent problem situations, and matching transformations with their original shape \\
Reasoning includes using known facts to derive strategies for unfamiliar calculations...
\end{tabular}} \& \multicolumn{3}{|l|}{\begin{tabular}{l}
Compare and order several shapes and objects based on length, area, volume and capacity using appropriate uniform informal units \\
(ACMMG037-Using Units of Measurement)
\end{tabular}} \& \begin{tabular}{l}
\({ }^{*}\) Comparing lengths using finger length, hand span or a piece of string \\
* Comparing areas using the palm of the hand or a stone \\
* Comparing capacities using a range of containers
\end{tabular} \& \multirow[t]{5}{*}{N/A} \& \multirow[t]{5}{*}{N/A} \& Interpret simple maps of familiar ocations and identify the relative positions of key features (ACMMG044) \& \begin{tabular}{|l|}
* Understanding that we use \\
representations of objects and their \\
positions, such as on maps, to allow \\
us to recieve and give directions and \\
to describe place
\end{tabular}\(\left|\begin{array}{l}\text { * Constructing arrangements of } \\
\text { objects from a set of directions }\end{array}\right|\) \\
\hline \& \& Compare masses of objects using balance scales (ACMMG038) \& * Using balance scales to determine whether the mass of different objects is more, less or about the same, or to find out how many marbles are needed to balance a tub of margarine or a carton of milk \& \begin{tabular}{l}
Describe and draw two-dimensiona shapes, with and without digital technologies \\
(ACMMG042)
\end{tabular} \& *Identifying key features of squares,
rectangles, triangles, kites,
rhombuse and cirles, such as
straight lines or curved lines, and
counting the edges and corners \& \& \& \begin{tabular}{l}
Investigate the effect of one-step slides and flips with and without digital technologies \\
(ACMMG045)
\end{tabular} \& * Understanding that objects can be
moved but changing position does
not alter an object's size or features \\
\hline \& \& Tell time to the quarter-hour, using the language of 'past' and 'to' (ACMMG039) \& Describing the characteristics of quarter past times on an analogue clock, and identifying that the small hand is pointing just past the number and the big hand is pointing to the three \& \multirow[t]{3}{*}{Describe the features of threedimensional objects (ACMmG043)} \& \multirow[t]{3}{*}{* Identifying geometric features such
as the number of faces, corners or
edges} \& \& \& \multirow[t]{3}{*}{Identify and describe half and quarter turns (ACMMG046)} \& \multirow[t]{3}{*}{\(|\)\begin{tabular}{l}
* Predicting and reproducing a \\
pattern based around anf and quarter \\
turns of a shape and sketching the \\
next element in the pattern
\end{tabular}} \\
\hline \& \& \begin{tabular}{l}
Name and order months and \\
seasons \\
(ACMMG040)为
\end{tabular} \& Investigating the seasons used by Aboriginal people, comparing them to those used in Western society and recognising the connection
to weather patterns. to weather patterns. \& \& \& \& \& \& \\
\hline \& \& \begin{tabular}{l}
Use a calendar to identify the date and determine the number of days in each month \\
(ACMMG041)此 2
\end{tabular} \& Using calendars to locate specific information such as finding a given date on a calendar and saying what day it is, and identifying personally or culturally specific days \& \& \& \& \& \& \\
\hline \multirow{3}{*}{\begin{tabular}{l}
Level 2 \\
Achievement Standard
\end{tabular}} \& \multirow[b]{3}{*}{NOTE: The standards are not divided into substrands in the AusVELS documents. However, logic would dictate that the standards could be pu into sub-strands, as demonstrated to the right.} \& They tell time to the quarter hour \& \& Students draw two-dimensional shapes, specify their features \& \& \multirow[t]{3}{*}{N/} \& \multirow[t]{3}{*}{N/A} \& \multirow[t]{2}{*}{and explain the effects of one-step transformations.} \& \multirow[t]{3}{*}{} \\
\hline \& \& \begin{tabular}{|c|}
\hline and use a calendar to identify the \\
date, days, weeks, months included \\
in seasons and other events.
\end{tabular} \& \& They recognise the features of three
dimensional objects. \& \& \& \& \& \\
\hline \& \& \multicolumn{3}{|c|}{Students order shapes and objects using intormal units for a range of measures.} \& \& \& \& They interpret simple maps of
familiar locations. \& \\
\hline \& \begin{tabular}{l}
Sourced from Level descriptions: \\
'At this level: \\
Understanding includes...,' ',...using appropriate language to communicate times, and identifying environmental symmetry.
\end{tabular} \& \begin{tabular}{l}
Measure, order and compare objects using familiar metric units of length mass and capacity \\
(ACMMG061)

\end{tabular} \& * Recognising the importance of using common

units of measurement
*Recognising and using centimetres and metres,

grams and kilograms, and millilitres and litres \& \begin{tabular}{l}
Make models of three-dimensiona objects and describe key features

(ACMMG063)

\end{tabular} \& * Exploring the creation of three--

dimensional objects using origami,

including prisms and pyramids \& Identify angles as measures of turn and compare angle sizes in everyday situations (ACMMG064) \& \& Create and interpret simple grid maps to show position and pathways (ACMMG065) \& $$
\left\lvert\, \begin{aligned}
& * \text { Creating a map of the classroom or } \\
& \text { playground }
\end{aligned}\right.
$$

\hline Level 3 \& Fluency includes...,' ',...using familiar metric units to order and compare objects...,' \& | Tell time to the minute and |
| :--- |
| investigate the eralionship between |
| units of time |
| (ACMMG062) | \& * Recognising there are 60 minutes in an hour and 60 seconds in a minute \& \& \& \& times \& Identify symmetry in the environment (ACMMG066) b \& | * Identifying symmetry in Aboriginal |
| :--- |
| rock carvings or art |
| * Identifying symmetry in the natural |
| and built environment |

\hline Level 3
Achievement Standard \& NOTE: The standards are not divided into sub strands in the AusVELS documents. However, logic would dictate that the standards could be put

into sub-strands, as demonstrated to the right. - \& \begin{tabular}{|c|}

\hline | Students use metric units for length, |
| :---: |
| mass and capacity. |

\hline They tell time to the nearest

minute.
\end{tabular} \& \& and make models of three-

dimensional objects. \& \& They use angle size as a measure of

turn in real situations. \& \& | Students match positions on maps with given information and create simple maps. |
| :--- |
| Students identify symmetry in the |
| natural and constructed environments. | \&

\hline
\end{tabular}

AusVELS - Mathematics AC: Measurement and Geometry (Strands and Sub-Strands with Elaboraions) (F-7)
Based on Australian Curriculum, Assessment and Reporting Authority (ACARA) materials

Year Level Indicators	PRoficiency strands The proficiencies reinforce the significance of working mathematically within the content and describe how the content is explored or developed. They provide the language to build in the developmental aspects of the learning of mathematics.	Sub-strands							
		Units of measurement		Shape		Geometric reasoning		Location and transformation	
		Content Descriptor	Elaborations						
Level 4	Sourced from Level descriptions: 'At this level: Understanding includes...,' '....using appropriate language to communicate times, and describing properties of symmetrical shapes	Use scaled instrumentst to measure and compare enents, masses, capacities and temperatures (ACMMGO84)	*Reading and interpreting the graduated scales on a range of measuring instruments to the nearest graduation	Compare the areas of regular and irregular shapes by informal means (ACMMG087)		```Compare angles and classify them as equal to, greater than or less than a right angle (ACMMG089)```	* Creating angles and comparingthem to a right angle using digital technologies		* Identifying the scale used on maps of cities and rural areas in Australia and a city in Indonesia and describing the difference * Using directions to find features on a map
	Fluency includes...,' ',...using instruments to measure accurately, creating patterns with shapes and their transformations...,' .Problem Solving includes...,' ',...comparing time durations..., Reasoning includes...,' ',...comparing	Compare objects using familiar metric units of area and volume (ACMMG290) (a)	* Comparing areas using grid paper * Comparing volume using centicubes * Recognising that metric units are not the only units used throughout the world, for example measuring the area of floor space using tatami mats (Japan), using squares for room and house area (Australia)	Compare and describe two dimensional shapes that result from combining and splitting common shapes, with and without the use of digital technologies (ACMMG088)	Identifying common two dimensional shapes that are part of a composite shape by recreating it from these shapes * Creating a two-dimensional shapes from verbal or written instructions			Create symmetrical patterns, pictures and shapes with and without digital technologies (ACMMG091) "	
	$\begin{aligned} & \text { '...Reasoning includes...,' ',...comparing } \\ & \text { angles...,' } \end{aligned}$	Convert between units of time (ACMMG085)	* Identifying and using the correct operation for converting units of time						
		Use am and pm notation and solve simple time problems (ACMMG086)	* Calculating the time spent at school during a normal school day * Calculating the time required to travel between two locations * Determining arival time given departure time						
Level 4 Achievement Standard	NOTE: The standards are not divided into sub strands in the AusVELS documents. However ogic would dictate that the standards could be put into sub-strands, as demonstrated to the right.	Students use scaled instruments to measure length, angle, area, mass, capacity and temperature of shapes and objects.				They classity angles in relation to a		They interprete information contained	
		They solve problems involving time duration. They convert between units of time.		Students compare areas of regular and irregular shapes using informal units. units.				Students create symmetrical simple and composite shapes and patterns with and without digital technology.	

AusVELS - Mathematics AC: Measurement and Geometry (Strands and Sub-Strands with Elaborations) (F-7)
Based on Australian Curriculum, Assessment and Reporting Authority (ACARA) materials

AusVELS - Mathematics AC: Measurement and Geometry (Strands and Sub-Strands with Elaboraions) (F-7)
Based on Australian Curriculum, Assessment and Reporting Authority (ACARA) materials

Year Level Indicators	PRoFICIENCY STRANDS The proficiencies reinforce the significance of working mathematically within the content and describe how the content is explored or developed. They provide the language to build in the developmental aspects of the learning of mathematics.	Sub-strands							
		Units of measurement		Shape		Geometric reasoning		Location and transformation	
		Content Descriptor	Elaborations						
Level 7	Sourced from Level descriptions: 'At this level: Understanding includes...., ',...plotting points on the Cartesian plane, identifying angles formed by a transversal crossing a pair of lines...,' Fluency includes...,' ',...calculating areas of shapes and volumes of prisms Problem Solving includes formulating and solving authentic problems using...,' ..measurements, working with transformations and identifying symmetry, calculating angles...,' ...Reasoning includes...,' ',...applying known geometric facts to draw conclusions about shapes...,'		*Building on the understanding of the area ofrectangles to develop formulas for the area oftriangles*Establishing that the area of a triangle is half thearea of an appropriate rectangle*Using area formulas for rectangles and trianglesto solve problems involving areas of surfaces* Investigating volumes of cubes and rectangular prisms and establishing and using the formula V $=I \times \mathrm{b} \times \mathrm{h}$ $*$ Understanding and using cubic units when interpreting and finding volumes of cubes and rectangular prisms	Draw different views of prisms and solids formed from combinations of prisms (ACMMG161)	* Using aerial views of buildings and other 3D structures to visualise the structure of the building or prism	Identify corresponding, alternate and co-interior angles when wo straight ines are crosed by tinansersesal (ACMMG163)$\|$		Describe translations, reflections in an axis, and rotations of multiples of 90° on the Cartesian plane using coordinates. Identify line and rotational symmetries (ACMMG181)	
Level 7 Achievement Standard	NOTE: The standards are not divided into substrands in the AusVELS documents. However ogic would dictate that the standards could be put into sub-strands, as demonstrated to the right.							They assign ordered pairs to given points on the Cartesian plane.	

