Year Level Indicators	Level descripions	Sub-strands							
		Units of measurement		Shape		Geometric reasoning		Location and transformation	
		Content descriptions	Elaborations						
Foundation	In Foundation level, students play with objects and draw pictures to develop links between their mmediate environment, everyday language and mathematical activity...,' ..Students compare common objects with respect to length, mass and capacity, and order events and compare their duration. They make rough estimates and simple measurements with respect to informal units Students name, sort and describe familiar everyday shapes and objects, and describe position and movement in their immediate environment...	Use direct and indirect comparisons to decide which is longer, heavier or holds more, and explain reasoning in everyday language (VCMMG078) Compare and order the duration of events using the everyday language of time (VCMMG079) Connect days of the week to familiar events and actions (VCMMG080)		Sort, describe and name familiar two-dimensional shapes and three dimensional objects in the environmen (VCMMG081)		N/A	N/A	Describe position and movement (VCMMG082)	*Interpreting the everyday language of location and direction, such as 'between', 'near', 'next to', forwards', 'owards' *Following and giving simple directions to guide a firind dround an obstacle path and vice versa
Foundation Leve Achievement Standard	NOTE: The standards are not divided into sub strands in the Victorian Curriculum documents. However, logic would dictate that the standards could be put into sub-strands, as demonstrated to the right. the right.			Students identify simple shapes in their envirionment and sort shapest by their common and distinctive features. features.		N/A	N/A	They use simple statements and gestures to describe location.	
Level 1	'In Level 1, students use mathematical symbols and language as well as materials and drawings in their mathematical explorations of daily life...,' ',...Students use uniform informal units to They tell time to the half-hour and use time and calendar terms such as hours, days, weeks and months to describe duration. Students use terms such as corner, edge and face to classify familiar shapes and objects, and are able to give and follow directions to familia locations...,			Recognise and classify familiar two dimensional shapes and threedimensional objects using obvious features (VCMMG098)		N/A	N/A	Give and follow directions to familiar locations. (vCMMG099)	
Level 1 Achievement Standard	NOTE: The standards are not divided into substrands in the Victorian Curriculum documents. However, logic would dictate that the standards could be put into sub-strands, as demonstrated to	Students use informal units to of measurement to order objects based ol lenght and capacity.		Students describe two-dimensional shapes and three-dimensiona objects.		N/A	N/A	They use the language of direction to move from place to place.	

The Victorian Curriculum - Mathematics: Measurement and Geometry (Sub-Strands with Elaborations) (F-7)
Based on Austraian Curriculum, Assessment and Reporting Authority (ACARA) materials (Date PDF created: June 5, 2016)

Year Level Indicators	Level descripions	Sub-strands							
		Units of measurement		Shape		Geometric reasoning		Location and transformation	
		Content descriptions	Elaborations						
Level 2	...,Students compare and order sets of shapes and objects based on length, area, volume and capacity using uniform informal units. They compare masses using balance scales, tell the time to the quarter hour, and use months and seasons to describe sequences of events over a longer time frame. Students describe sets of shapes and objects defined in terms of properties, and draw examples of these with and without the use of technology They use simple maps and identify relative locations, and investigate the effect of simple transformations of slides, flips, half and quarter turns, both by hand and using technology...,'	Compare and order several shapes and objects based on length, area, volume and capacity using appropriate uniform informal units (VCMMG115 - Using Units of Measurement)			* Comparing lengths using finger length, hand span or a piece of string * Comparing areas using the palm of the hand or a stone * Comparing capacities using a range of containers	N/A	N/A	Interpret simple maps of familiar locations and identify the relative positions of key features (VCMMG122)	* Understanding that we use representations of objects and their positions, such as on maps, to allow us to receive and give directions and to describe place * Constructing arrangements of objects from a set of directions
		Compare masses of objects using balance scales (VCMMG116)	* Using balance scales to determine whether the mass of different objects is more, less or about the same	$\begin{gathered} \text { Describe and draw two-dimensionalal } \\ \text { shapes, with and without digital } \\ \text { technologities } \\ \text { (VCMMG120) } \end{gathered}$	* Identifying key features of squares, rectangles, triangles, kites, rhombuses and circles, such as straight ines or curved lines, and counting the edges and corners			Investigate the effect of one-step slides and flips with and without digital technologies (VCMMG123)	* Understanding that objects can be moved but changing position does not alter an object's size or features
		Tell time to the quarter-hour, using the language of 'past' and 'to' (VCMMG117)	Describing the characteristics of quarter past times on an analogue clock, and identitying that he small hand is pointing just past the number and the big hand is pointing to the three	Describe the features of threedimensional objects (VCMMG121)	I Identifing geometric features suchas the number of faces, corners oredges			Identify and describe half and quarter turns (VCMMG124)	* Predicting and reproducing a patternbased around half and quarter turns ofa shape and sketching the nextelement in the pattern
		Name and order months and seasons (VCMMG118)	* Investigating the seasons used by Aboriginal peoole, comparing them to those used in WWestern socieity and recoognising the connection to weather patterns. West to we oo weather patterns.						
		Use a calendar to identify the date and determine the number of days in each month (VCMMG119)	* Using calendars to locate specific information, such as finding a given date on a calendar and saying what day it is, and identifying personally or culturally specific days						
		They tell time to the quarter ho		Students draw two-dimensional shapes, specify their features.		N/A	N/A	.and explain the effects of one-step transformations.	
Level 2	NOTE: The standards are not divided into substrands in the Victorian Curriculum documents However, logic would dictate that the standards	.. and use a calendar to identify the date, days, weeks, months included in seasons and other events.		They recognise the features of three- dimensional objects. dimensional objects.					
	the right.	Students order s	shapes and objects using informal units for a ran	of measures.				They interpret simple maps of familiar locations.	
	'In Level 3, students increasingly use mathematical terms and symbols to describe computations, measurements and characteristics of objects...,' ...Students use metric units of length, mass and capacity to measure, order and compare objects. They associate angle with measure of turn and compare angles in everyday situations.	Measure, order and compare objects using familiar metric units of length, area, mass and capacity (VCMMG140)		Make models of three-dimensional objects and describe key features (VCMMG142)	*Exploring the creation of three- dimensional objects, includuing prisms and pyramids, using origami	Identify angles as measures of turn and compare angle sizes in everyday situations (VCMMG146)	* Opening doors partially and fullyand comparing the size of the anglescreatedRecognising that analogue clocks use the turning of arms to indicate time, and comparing the size of angles between the arms for familiar times	Create and interpret simple grid maps to show position and pathways (VCMMG143)	$\begin{aligned} & \text { *Creating a map of the classroom or } \\ & \text { playground } \end{aligned}$
Level 3	They tell the time in minutes and convert between units of time. They use simple grids in maps and identify	Tell time to the minute and investigate the ereataiossip between units of time (VCMMG141)	*Recognising there are 60 minutes in an hour and 60 seconds in a minute					Identify symmetry in the environment (VCMMG144)	$\begin{aligned} & \text { * Identifyying symmetry in Aboriginal } \\ & \text { rock carvings or art } \\ & \text { * Identifying symmetry in the natural } \\ & \text { and built environment } \\ & \hline \end{aligned}$
								Identify and describe slides and turns found in the natural and built environment (VCMMG145)	*Recognising and reperesenting slides and turu used in brickwork around the school * Recognising and representing silides and turn used in in porting acivivities
Level 3 Achievement Standard		Students use metric units for length, area, mass and capacity. They tell time to the nearest minute.		...and make models of three- dimensional objects.		They use angle size as a measure of turn in real situations...		Students match positions on maps with given information and create simple maps. Students identify symmetry in the natural and constructed environments.	

The Victorian Curiculum - Mathematics: Measurement and Geometry (Sub-Strands with Elaborations) (F-7)
Based on Austraiia Curriculum, Assessment and Reporting Authority (ACARA) materials (Date PDF created: June 5, 2016)

Year Level Indicators	Level descriptions	Sub-strands							
		Units of measurement		Shape		Geometric reasoning		Location and transformation	
		Content descriptions	Elaborations						
Level 4	In Level 4, students,... broaden their use of Students use scaled instruments with metric units to measure and compare length, mass, capacity and temperature. They compare shapes and objects using familiar metric units for area and volume, and compare angles with respect to a right angle. Students use 'am' and 'pm' notations, and solve simple time problems, including conversions between units of time. They construct new shapes by combining or splitting common shapes, and create symmetric patterns, pictures and shapes with and without the use of technology. They interpret and use basic maps with simple scales, directions and legends...,	Use scaled instruments to measure and compara lenths, masses, capacitipes and temperatures (VCMMG165)	Reading and interpreting, to the nearest graduation, the graduated scales on a range of measuring instruments	Compare the areas of regular and irregular shapes by informal means (VCMMG169)		Compare angles and classify them as equal to, greater than or less than a right angle (VCMMG174)	*Creating angles and comparingthem totechnologigies angle and using digital	Use simple scales, legends and directions to interpret information contained in basic maps (VCMMG172)	*Identifing the scale used on maps of cities and rural areas in Australia and a aity in Indonesia and describing the difference * Using directions to find features on a map
		Compare objects using familiar metric units of area and volume (VCMMG166)	* Comparing areas using grid paper * Comparing volume using centicubes * Recognising that metric units are not the only units used throughout the world, for example measuring the area of floor space using tatami mats (Japan), using squares for room and house area (Australia)	$\begin{aligned} & \text { Compare and describe two } \\ & \text { dimensional shapes that result from } \\ & \text { combining and splitting common } \\ & \text { shapes, with and without the use } \\ & \text { of digital technologies } \\ & \text { (VCMMG170) } \end{aligned}$	* Identifying common twodimensional shapes that are part of a composite shape by recreating it from these shapes * Creating a two-dimensional shapes from verbal or written instructions			Create symmetrical patterns, pictures and shapes with and without digital technologies (VCMMG173)	$*$ Using stimulus materials such as the motits in Centrara Asian texties, Tibetan artefacts, Indian lous designs and symmetry in Yolngu or Central and Western Desert art
		Convert between units of time (VCMMG167)	${ }^{*}$ Identifing and using the correct operation for						
		Use am and pm notation and solve simple time problems (VCMMG168)	*Calculating the time spent at school during a normal school day * Calculating the time required to travel between two locations * Determining arrival time given departure time						
				Explain and compare the geometric properties of twodimensional shapes and threedimensional objects (VCMMG171)	*Describing the similarities and differences between two-dimensional shapes and three-dimensional objects *Recognising two-dimensional shapes that are the faces for three- dimensional ojbects such a s prisms, pyramids and platonic solids (includuing tetrahedrons, cubes and dodecahedrons)				
		Students use scaled instuments to	easure length, angle, area, mass, capacity and	ire of shapes and ojeects.		They classif y angles in relation to a		Students interprete intormation contained in maps.	
Level 4 Achievement Standard	strands in the Victorian Curriculum documents. However, logic would dictate that the standards could be put into sub-strands, as demonstrated to the right.	They solve problems involving time duration. They convert between units of time.		Students compare areas of regular and irregular shapes using informal and irregular shapes using informa units.				Students create symmetrical simple and composite shapes and patterns, with and without digital technology.	

The Victorian Curriculum - Mathematics: Measurement and Geometry (Sub-Strands with Elaborations) (F-7)
Based on Austraian Curriculum, Assessment and Reporting Authority (ACARA) materials (Date PDF created: June 5, 2016)

(${ }_{\text {Year Level }}^{\text {Indicators }}$	Level descriptions	s of measurement		Shape Sub-stranc		Geometric reasoning		Location and transformation			
				Content descriptions	Elaborations	Content descriptions	Elaborations				
Level 5	,...Students choose and use suitable metric and other units for measurement of length, angle, area, volume, capacity and mass. They calculate the perimeter and area of rectangles, and construct specified angles using protractors and other relevant technologies. Students use 12 and 24 hour time systems, with measurements and conversions to	Choose appropriate units of volume, capacity and mass (VCMMG195)	*Investigating alternative measures of scale to demonstrate that these vary between countries and change over time. For example, temperature measurement in Austraia, Indonesia, Japan and USA $*$ Recognising that some units of measurement are better suited for some tasks than others, for example kilometres rather than metres to measure the distance between two towns			Connect three-dimensional objects with their nets and other twodimensional representations (VCMMG198)	* Identifying the shape and relative position of each face of a solid to determine the net of the solid, to including that of prisms and pyramids *Representing two-dimensional shapes such as photographs, sketches and images created by digital technologies	Estimate, measure and compare angles using degrees. Construct angles using a protractor (VCMMG202)	* Measuring and constructing angles using both 180° and 360° protractors * Recognising that angles have arms and a vertex, and that size is the amount of turn required for one arm to coincide with the other	Use a grid reference system to describe locations. Describe routes using landmarks and directional language (VCMMG199)	* Comparing aerial views of Country desert paintings and maps with grid references * Creating a grid reference system for the classroom and using it to locate objects and describe routes from one object to another
	They use grid reference systems to describe location and connect three-dimension objects with two-dimensional representations. They translate, reflect and rotate shapes with and without the use of technology, and identify point and line symmetries. They explore similarity of familiar shapes through enlargement...,'	Calculate the perimeter and area of rectangles using familiar metric units (VCMMG196)	* Exploring efficient ways of calculating the perimeters of rectangles such as adding the length and width together and doubling the result * Exploring efficient ways of finding the areas of rectangles * Measuring volume and capacity by counting the number of cubes (cubic centimetres) * Exploring efficient ways of finding the volume and capacity of rectangular prisms and cubes					Describe translations, reflections and rotations of two-dimensional shapes. dentify line and rotational symmetries (VCMMG200)			
		Compare 12- and 24-hour time systems and convert between them (VCMMG197)	*Investigating the ways time was and is measred in ifferent Aboriginal Country, such as using tidal change *Using units hours, minutes and seconds					Apply the enlargement fransformation to familiar two dimensional shapes and explore the properties of the resulting image compared with the original (VCMMG201)	* Using digital technologies to enlarge shapes $*$ Using a grid system to enlarge a favourite image or cartoon		
Level 5 Achievement Standard	NOTE: The standards are not divided into substrands in the Victorian Curriculum documents. However, logic would dictate that the standards could be put into sub-strands, as demonstrated to the right.			Students connect three-dimensional objects with their two-dimensional representations.		They estimate angles, and use protractors and digital technology to construct and measure different angles.					

The Victorian Curiculum - Mathematics: Measurement and Geometry (Sub-Strands with Elaborations) (F-7)
Based on Australian Curriculum, Assessment and Reporting Authority (ACARA) materials (Date PDF created: June 5, 2016)

Year Level Indicators	Level descripions	Sub-strands							
		Units of measurement		Shape		Geometric reasoning		Location and transformation	
		Content descriptions	Elaborations						
Level 6	measurement, convert between units, recognise the prefixes used in metric measurements, and elate and compare measures and units, including capacity and volume. They develop and use timetables. Students investigate combinations of transformations with and without technology, and use the Cartesian coordinate system to describe location in the plane. They investigate the sum of angles at a point on a line and vertically opposite angles...,			Construct simple prisms and pyramids (VCMMG228)	Considering the history and significance of pyramids from a range of cultural perspectives including those structures found in China, Korea and Indonesia * Constructing prisms and pyramids from nets, and skeletal models		* Identifying the size of a right angle as 90° and defining acute, obtuse, straight and reflex angles * Measuring, estimating and comparing angles in degrees and classifying angles according to their sizes * Investigating the use of rotation and symmetry in the diagrammatic representations of kinship relationships of Central and Western Desert people * Recognising and using the two alternate conventions for naming angles		*Understanding which altributes of a shape remain thes same or change under the effect of tansomations such as size, shape or orientation *Creating tessellations with simple shapes or simple composite shapes
Level 6 Achievement Standard	NOTE: The standards are not divided into substrands in the Victorian Curiculum documents. However, logic would dictate that the standards could be put into sub-strands, as demonstrated to the right.			nts construct simple prisms and pyramids		They solve problems using the properties of angles...			

The Victorian Curiculum - Mathematics: Measurement and Geometry (Sub-Strands with Elaborations) (F-7)
Based on Austraiia Curriculum, Assessment and Reporting Authority (ACARA) materials (Date PDF created: June 5, 2016)

Year Level Indicators	Level descripions	Sub-strands							
		Units of measurement		Shape		Geometric reasoning		Location and transformation	
		Content descriptions	Elaborations						
Level 7	',...Students use formulas for calculating areas of volumes of cubes and rectangular prisms. They form two-dimensional representations of prisms, buildings and other structures. They use simple combinations of transformations, with and without technology, to create geometric patterns and identify line and point symmetry, apply parallel line and transversal angle properties, angles sums in triangles and quadrilaterals, classify triangles and quadrilaterals, and construct them using compass and straight edge and dynamic geometry technology...,'	Establish the formulas for areas of rectangles, triangles and paralleleolorams and use these in problem solving (VCMMG258) Calculate volumes of rectangular prisms (VCMMG259)	* Building on the understanding of the area of rectangles to develop formulas for the area of triangles * Establishing that the area of a triangle is half the area of an appropriate rectangle * Using area formulas for rectangles and triangles to solve problems involving areas of surfaces * Investigating volumes of cubes and rectangular prisms and $=1 \times b \times h$ establishing and using the formula V * Understanding and using cubic units when interpreting and finding volumes of cubes and rectangur prisms	Draw different views of prisms and solids formed from combinations of prisms (VCMMG260)	$*$ Using aerial views of buildings and other 3D structures to visualise the structure of the building or prism	Classify triangles according to their side and angle properies and describe quadrifilaterals (VCMMG262)	* Identifying side and angle properties of scalene, isosceles, right angled and obtuse- angled triangles$\|$*Describing squares, rectangles, rombuses, parallelograms, kites and trapeziums * Using concrete materials and digital technologies to investigate the angle sum of a triangle and quadrilateral *Defining and classifying pairs of angles as complementary, supplementary, adjacent and vertically opposite * Constructing parallel and perpendicular lines using their properties, a pair of compasses and a ruler, and dynamic geometry software * Defining and identififying the relationshis between altenate, corresponding and cointerior angles for a pair of parallel lines cut by a transversal	Describe translations, reflections in an axis, and rotations of multiples of 90° on the Cartesian plane using coordinates. Identify line and rotational symmetries (VCMMG261)	
$\stackrel{\text { Level } 7}{ }$	NOTE: The standards are not divided into substrands in the Victorian Curriculum documents. However, logic would dictate that the standards could be put into sub-strands, as demonstrated to the right.					Students name the types of angles formed by a transversal crossing parallel lines and solve simple numerical problems involving these ines and angles nt transformations of these shapes in		From NUMBER \& ALGEBRA They assign ordered pairs to given points on the Cartesian plane...	

